
Tetrahedron Letters 47 (2006) 3549–3552
A simple method for the conversion of propargyl alcohols
to symmetrical 1,5-diynes using low valent titanium reagents
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Abstract—Reaction of propargyl alcohols with low valent titanium species, prepared using the TiCl4/Et3N and TiCl4/Zn reagent
systems, gives the corresponding symmetrical 1,5-diynes in 56–74% yields.
� 2006 Elsevier Ltd. All rights reserved.
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1,5-Diynes are an important class of compounds useful
for the synthesis of enediynes,1 1,5-enynes,2 1,5-dienes,3

alkylidenecyclopentenones, butenolides,4 pyrroles,5

unsaturated macrocyclic compounds6 and several phar-
maceutically important compounds.7 Hence, the devel-
opment of methods for the synthesis of 1,5-diynes is
important. During the course of our research efforts
towards the development of organotitanium reagents,8,9

we have developed a one-pot method for the synthesis of
1,5-diynes from the corresponding propargyl alcohols
using low valent titanium species. The results are
reported herein.

We observed that the reaction of undec-5-yn-4-ol 1a
(R1 = C5H11, R2 = C3H7) with the low valent titanium
species, produced in situ using the TiCl4/Et3N or
TiCl4/Zn reagent system, gave the corresponding 1,5-
diyne 2a in a 71% yield (Scheme 1).10 We also examined
the reaction of propargyl alcohol 1a using the titanium
reagent prepared with various amines including Bu3N,
iPr2NEt and Et3N (Table 1, entries 1–3).

Optimum results were obtained using the readily acces-
sible triethylamine (Table 1, entry 1). Several other
propargyl alcohol derivatives were converted to the
corresponding symmetrical 1,5-diynes under these
conditions (Table 1). The yields were in the range of
58–74%. The 1,5-diynes were obtained as diastereomeric
mixtures in some cases (Table 1). The major isomer
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obtained in the case of the 1,5-diyne 2h was found to
be dl as revealed by single crystal X-ray analysis.11

The ORTEP diagram of the crystal structure of the
1,5-diyne 2h is shown in Figure 1.

The reaction in the case of the propargyl alcohol 1k gave
the corresponding allenyne 3a in 51–61% yields using
different amines (Scheme 2).12

The structure of the allenyne 3a was confirmed by single
crystal X-ray analysis.13 The ORTEP diagram of 3a is
shown in Figure 2.

A tentative mechanism involving reaction of the Ti(III)
species,8h produced in situ with the propargyl alcohol
followed by homolysis of the carbon oxygen bond, to
give a Ti(IV) and propargyl radical species may be con-
sidered. The propargyl radicals could then couple to give
the 1,5-diyne and allenyne depending upon the steric
requirements (Scheme 3).

We also examined this transformation using the tita-
nium reagent prepared by reducing TiCl4 with Zn, since
this system also gives TiCl3 as the major species (Scheme
1).14 The results are summarized in Table 2.
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Table 1. Conversion of propargyl alcohols into 1,5-diynes using the TiCl4/R3N reagent systema

Entry Substrate Reducing agent Productb Diastereomeric ratioc Yieldd (%)

1
R1

OH

H
R2

1a
R1 = C5H11 R2 = C3H7

Et3N

2a

R1
R2

R2
R1

R1 = C5H11  R2 = C3H7

100:0 71

2 1a Bu3N 2a 100:0 66
3 1a iPr2NEt 2a 100:0 61
4 R1 = C5H11, R2 = iBu 1b Et3N R1 = C5H11, R2 = iBu 2b 86:14 68
5 R1 = C5H11, R2 = C7H15 1c Et3N R1 = C5H11, R2 = C7H15 2c 100:0 69
6 R1 = C5H11, R2 = C9H19 1d Et3N R1 = C5H11, R2 = C9H19 2d 100:0 74
7 R1 = Ph, R2 = C4H9 1e Et3N R1 = Ph, R2 = C4H9 2e 100:0 68
8 R1 = Ph, R2 = C7H15 1f Et3N R1 = Ph, R2 = C7H15 2f 100:0 58
9 R1 = Ph, R2 = C9H19 1g Et3N R1 = Ph, R2 = C9H19 2g 100:0 63

10 R1 = Ph, R2 = 1-Naphth 1h Et3N R1 = Ph, R2 = 1-Naphth 2h 87:13 61

a The reactions were carried out using TiCl4 (2 mmol), R3N (4 mmol) and propargyl alcohol (2 mmol).
b All the products (2a–h) were identified by IR, 1H NMR, 13C NMR and mass spectral data and the products 2a–f and 2h were also characterized by

elemental analysis.
c Diastereomeric ratios were estimated from 1H NMR (400 MHz) spectral signals.
d Yields of isolated products.
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Figure 1. An ORTEP representation of the crystal structure of 1,5-
diyne 2h. (Thermal ellipsoids are drawn at 15% probability.)

Figure 2. An ORTEP representation of the crystal structure of
allenyne 3a. (Thermal ellipsoids are drawn at 20% probability.)
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Previously, 1,5-diynes had been prepared via the reac-
tion of 1,3-dilithiopropyne and propargyl chloride,15a

or 3-silylpropargyl carbonates using a palladium cata-
lyst,15b and via the reaction of propargyl carbonates



Table 2. Conversion of propargyl alcohols into 1,5-diynes using the TiCl4/Zn reagent systema

Entry Substrate Productb Diastereomeric ratioc Yieldd (%)

1 R1

1a R2

OH

R1 = C5H11  R 2 =  C 3H7

2a

R1
R2

R2
R1

100:0 63

2 R1 = C5H11, R2 = C9H19 1d R1 = C5H11, R2 = C9H19 2d 100:0 58
3 R1 = Ph, R2 = C4H9 1e R1 = Ph, R2 = C4H9 2e 100:0 68
4 R1 = Ph, R2 = 1-Naphth 1h R1 = Ph, R2 = 1-Naphth 2h 84:16 71
5 R1 = C5H11, R2 = 1-Naphth 1i R1 = C5H11, R2 = 1-Naphth 2i 83:17 66
6 R1 = C5H11, R2 = Ph 1j R1 = C5H11, R2 = Ph 2j 87:13 56

a The reactions were carried out using TiCl4 (2 mmol), Zn (4 mmol) and propargyl alcohol (2 mmol).
b All the products (2a–j) were identified by IR, 1H NMR, 13C NMR and mass spectral data and the products 2a–h were also characterized by

elemental analysis.
c Diastereomeric ratios were estimated from 1H NMR (400 MHz) spectral signals.
d Yields are of isolated products.
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mediated by Ti(OiPr)2Cl2/Mg.15c Since 1,5-diynes can
now be readily accessed via simple one-pot procedures,
the methods described here have considerable potential
for further synthetic exploitation.
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